

Development of NYC DEP's SARS-CoV-2 RNA Environmental Monitoring Program

John Dennehy, Monica Trujillo, Davida Smyth, Andrea Silverman, Catherine Hoar, Peter Williamsen, Francoise Chauvin, Esmeraldo Castro, Alexander Clare, Hope McGibbon, Samantha Patinella and Dimitri Katehis

Agenda

In the beginning... Genetic signal concentration - Method development and data Clinical data versus wastewater data Sequencing Concluding thoughts

Acknowledgments

Vincent Sapienza Pamela Flardo Michael DeLoach **Dimitrios Katehis** Peter Williamsen Françoise Chauvin William Kelly Esmeraldo (Alan) Castro Alexander Clare Hope McGibbon Samantha Patinella Naudet Joasil Gina Behnke Samantha MacBride Jorge Villacis Ira Elmore Angie Kalicharan Pedick I ai

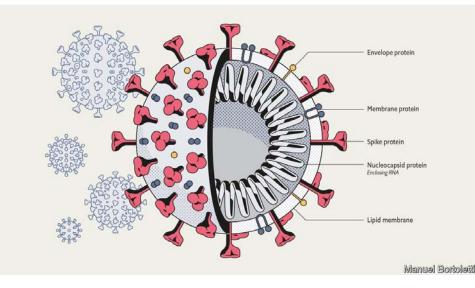
CUNY team:

John Dennehy (Queens College) Monica Trujillo (Queensborough CC) Davida Smyth (The New School)

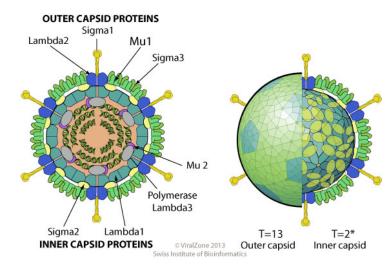
Krish Ramalingam (CCNY)

NYU team:

Andrea Silverman (NYU – Tandon School) Catherine Hoar (NYU - Funded by the Alfred P. Sloan Foundation)



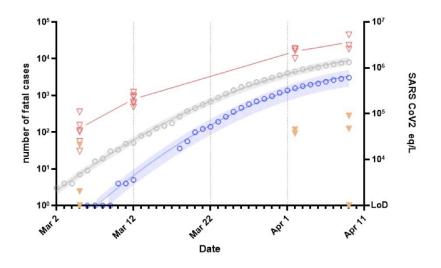
Overview



What we know:

- Viral presence in human GI tract and viral RNA (genetic material) can be shed in feces for about month
- Typically not present in urine
- Presence of Viral RNA different from Presence of Infectious Virus
 - No evidence of transmission from sewage

Coronaviruses with Lipid Bi-Layer



Typical Enteric Non-Enveloped Viruses with Protein Capsid

Overview

- Environmental Monitoring in Individual Sewersheds: a tool to identify infection trends in a population
- Examples: Samples for COVID-19 in Amsterdam and Paris using techniques developed for Polio, Norovirus and Hepatitis (capsid protected viruses)
- More research is needed to refine analytical techniques for coronavirus

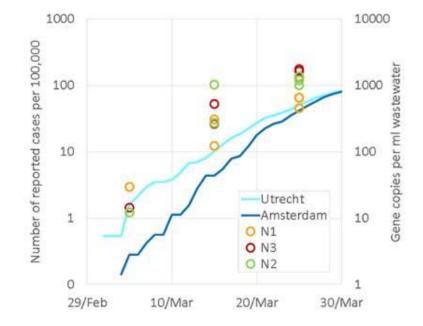


Figure 1: Quantitative time-course monitoring of SARS-CoV2 in wastewater samples from

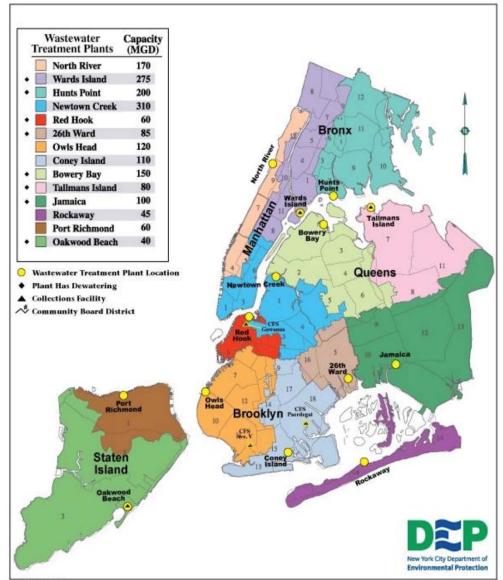
Paris area

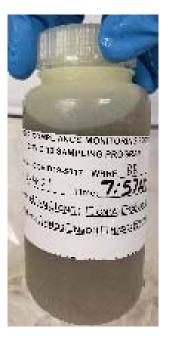
DEP Research and Development Efforts

A true partnership:

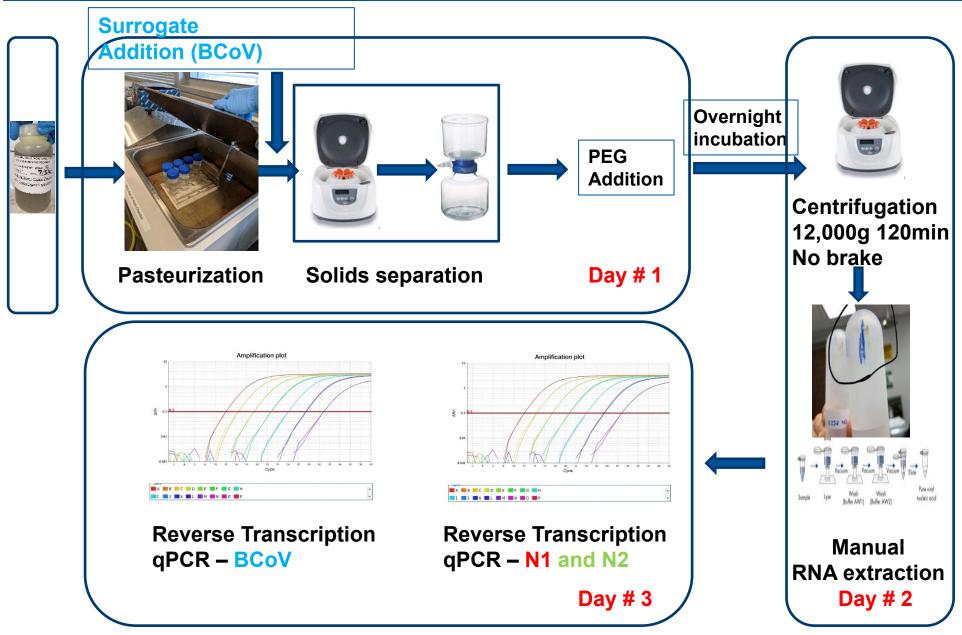
- Analytical method developed by CUNY
 - Plant influent
 - 3-day procedure
- Staff training provided by CUNY and NYU
- Procurement Support through CUNY
- Ongoing support from NYU and CUNY
 - Analytical support
 - Method extension
 - Data interpretation
 - Bridging to Microbial Source Tracking

NYU



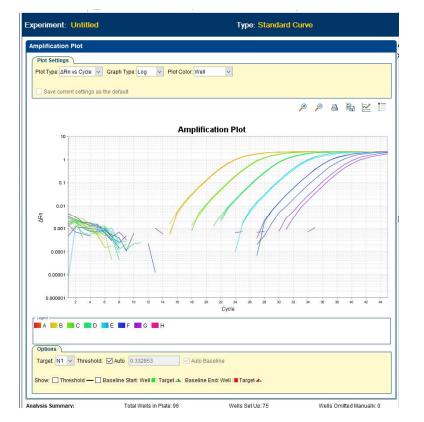


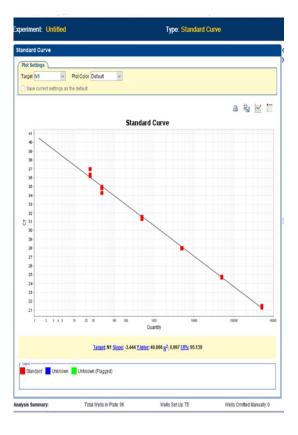
Sampling program



NYCOEP/IRCIA/AU 4/09

Sample analysis workflow


Protection

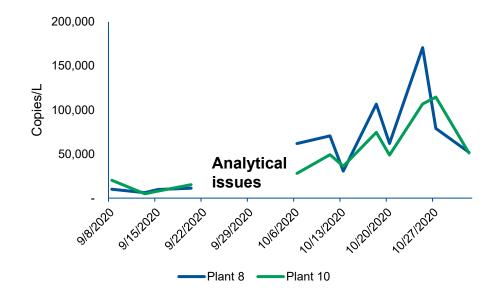


Method developed by the CUNY team

Quality Control and Validation

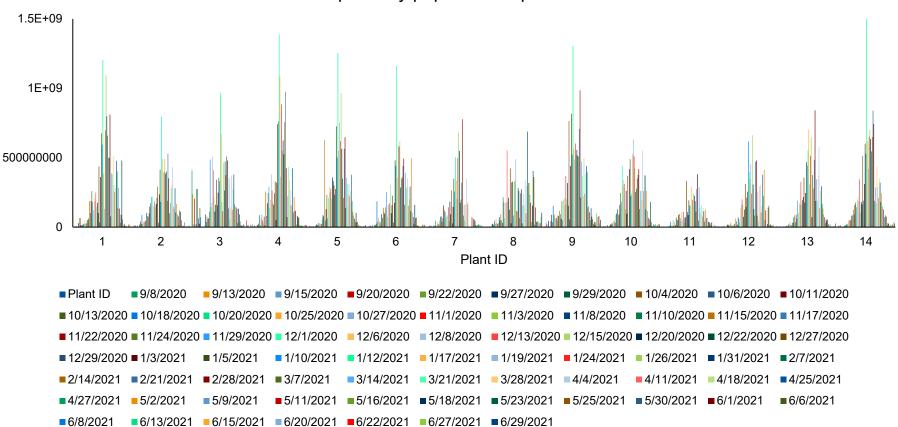
- Positive control ("surrogate"):
 - Bovine coronavirus vaccine (BCoV) spiked into each sample.
 - Wide recovery range
- Negative controls:
 - Method blank = Type I water processed through the entire protocol Acceptance criterion: non-detect
 - No Template Control = Type I water processed through RT-qPCR Acceptance criterion: non-detect
- Duplicates:
 - One sample per batch is processed and analyzed in duplicate.
- PCR: all RNA extracts analyzed in triplicate

Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: findings from an interlaboratory methods evaluation in the U.S.

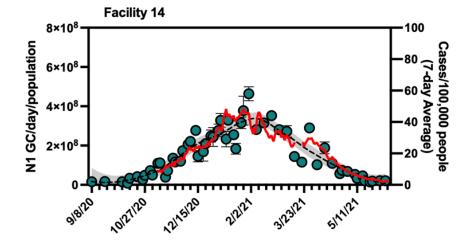

Brian M. Pecson et al. (2020) Environ. Sci.: Water Res. Technol

"A nationwide interlaboratory comparison of methods for the quantification of SARS-CoV-2 genetic signal in wastewater showed a high degree of reproducibility. 80% of the results from eight method groups (36 different methods) fell within a band of approximately +/- 1-log GC/L."

LoD and LoQ



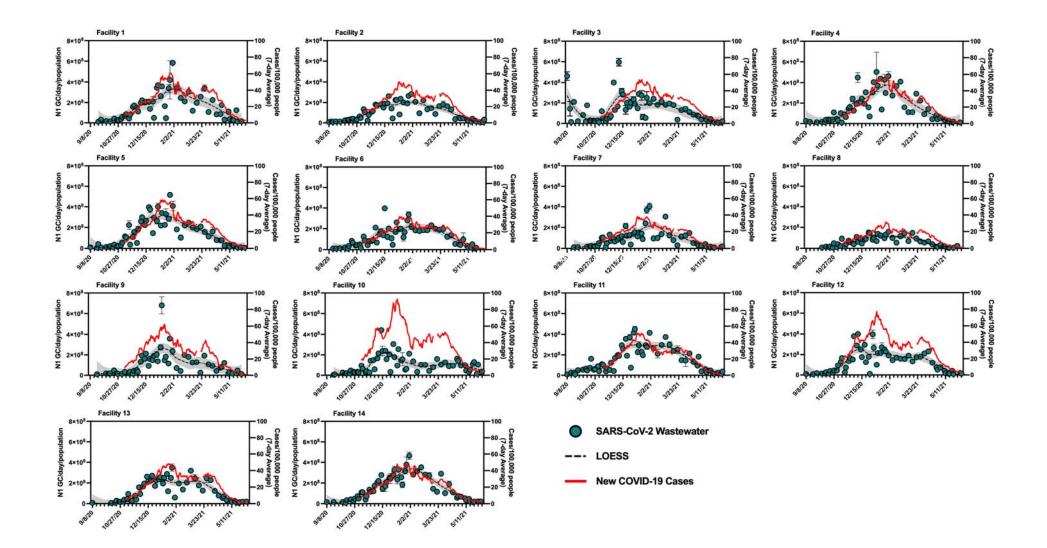
- Limit of Detection: 4,500 copies/L
 - concentration that produces at least 95% positive replicates
- Limit of Quantitation: 15,000 copies/L
 - LoQ: lowest concentration where replicates show a CV ≤ 35% on back calculated concentrations

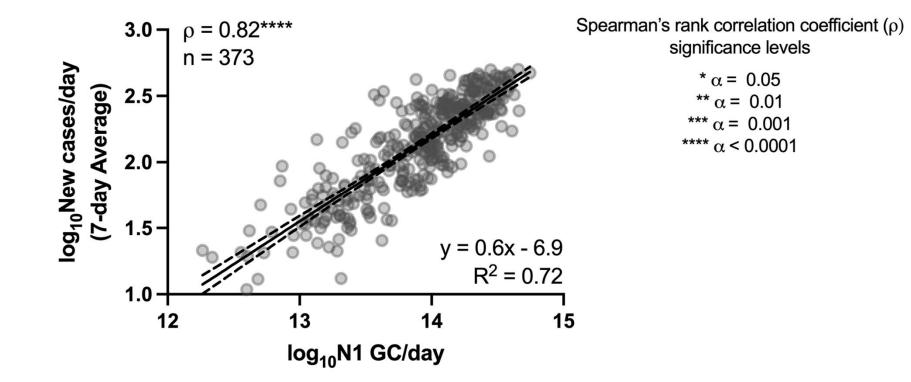


Copies/day/population equivalent

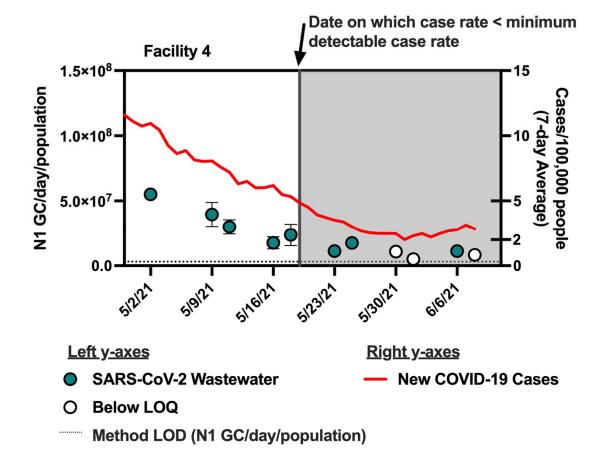
Data normalized by flow and population

Clinical data versus wastewater data





Clinical data versus wastewater data

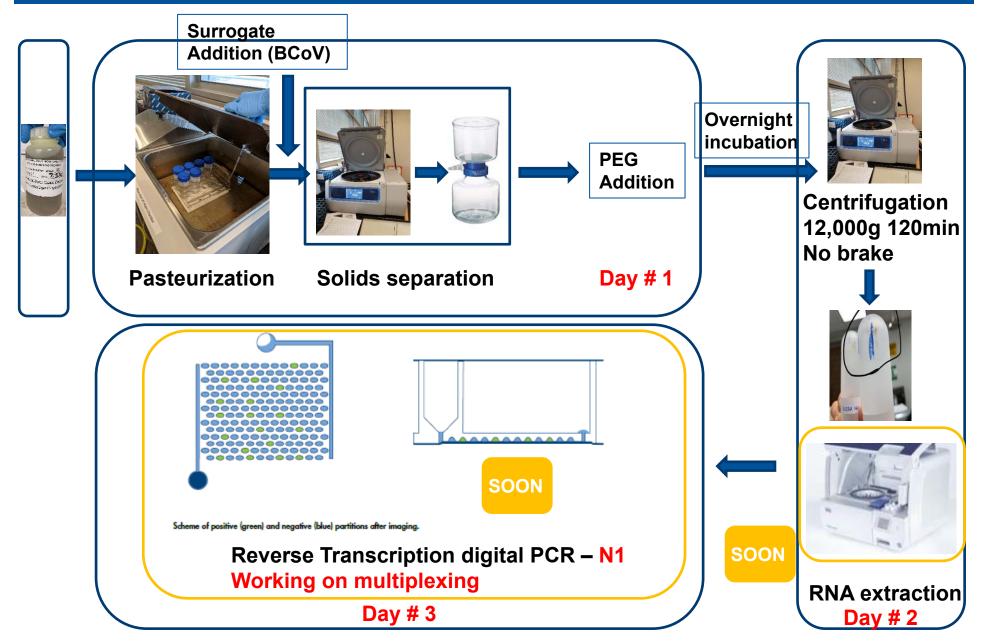


Estimating LOD – number of cases / day

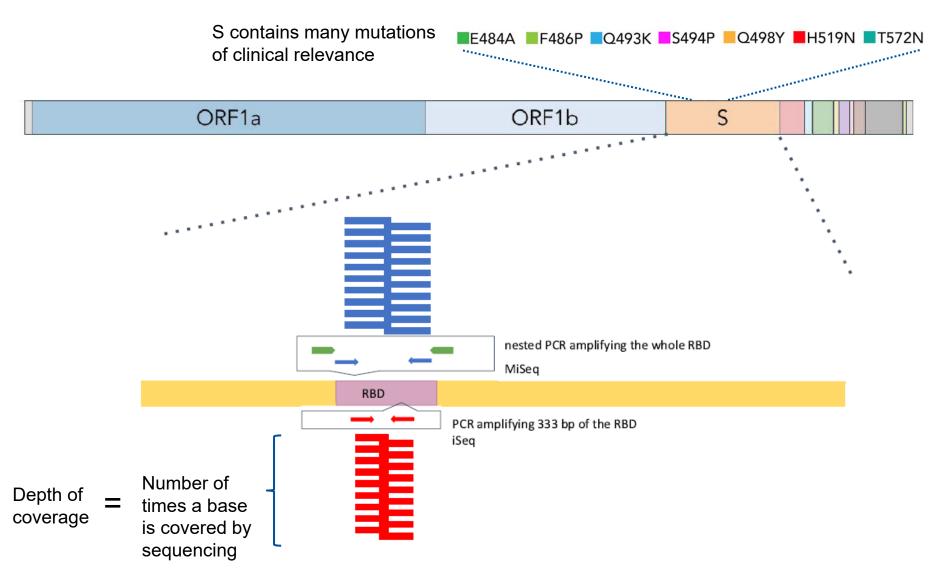
Estimated minimum detectable COVID-19 case rates reached May 2021, but viral RNA still detectable in wastewater. Possibly due to:

- Decreased COVID-19 testing rates?
- Asymptomatic and mild cases of vaccinated individuals?
- Prolonged fecal shedding of the virus?
- Limitations of methodology used for estimate?

Continuous improvement



- QA/QC Standard used for RT-qPCR:
 - DNA
 - DNA Linearized plasmid
 - RNA: Twist control
 - RNA: EURM-19 standard
 - Evaluation of inactivated ATCC SARS-CoV-2
- Variability study
- Normalization
 - BCoV
 - PMMoV (fecal marker)
- Automation and Analytical Capacity
 - 14 Slot Centrifuges (2) Started with one centrifuge (6 slots)
 - QIAcube Automated RNA extraction enhance analytical consistency
 - Digital PCR Reduce analytical noise and enhance data quality and PCR system throughput
- Staffing
 - Started with a single staff member
 - Currently 3 active staff and 1 back up



"We are building the boat as we are sailing it" - (CDC)

Sample analysis protocol - N1 – Improved

Targeted sequencing approach

The more depth of coverage you have – the more certain you can be that the sequence is real

Protection

Identifying mutations and variants

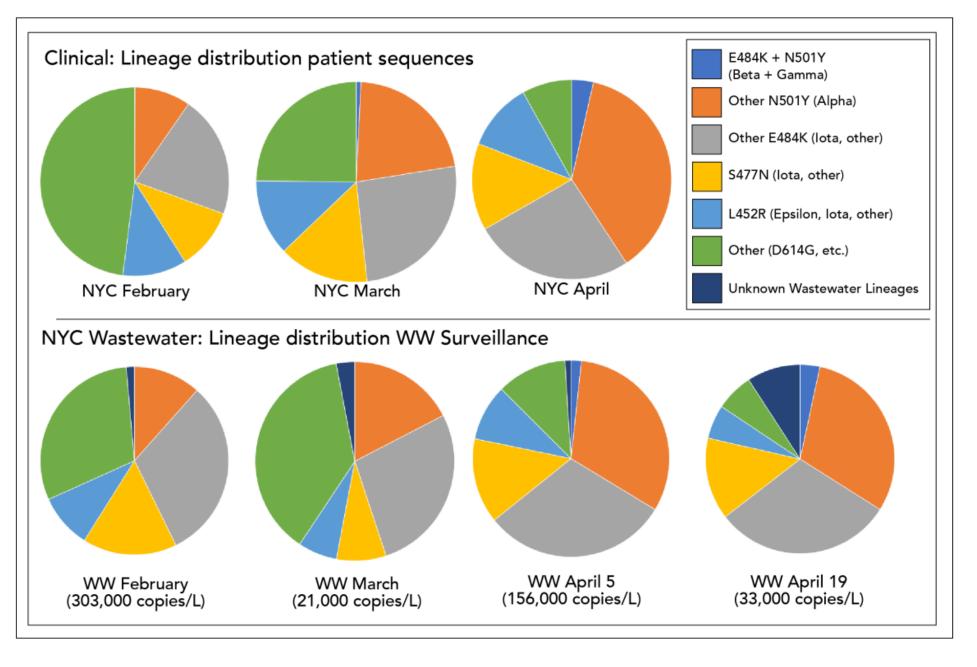
15077 depth of coverage = average 15077 sequences covering the positions

2,000		4,000	6,000		8,000		10,000	12,0	000	14,000		16,000	18	,000	20,00	0	22,000		24,000	26,	000	28,000	
onsensus 15,077 overage	· · · · · · · · · · · · · · · · · · ·	0 22,870 UAUAGCUUGGAA	22,880	22,890 UUGAUUCUAA	22,900 	22,910 AAUUAUAAUI	22,920 JACCUGUAUAG	22,930 AUUGUUUAGG	22,940	22,950 UCAAACCUUU	22,960 JGAGAGAGAU	22,970	22,980	22,990 GGCCGGUAGCA	23,000 ACACCUUGUAA	23,010 AUGGUGUUGA	23,020 AGGUUUUAAUL	23,030	23,040	23,050 AUAUGGUUUC	23,060 CAACCCACUA	23,070 AUGGUGUUGG	23,079 JUACCAACC
	50 22,85	9 22,869	22,879	22,889	22,899	22,909	22,919	22,929	22,939	22,949	22,959	22,969	22,979	22,989	22,999	23,009	23,019	23,029	23,039	23,049	23,059	23,069	23 078
 MN908947 Variants: QC 	AGGCUGCGU	UAUAGCUUGGAA		UUGAUUCUAA	19900990990	AAUUAUAAU		AUUGUUUAGG		UCAAACCUUU	JGAGAGAGAGAU	AUUUCAACUG	AAAUCUAUCAU		ACACCOUGUA		AGGUUUUAAUU	IGUUACUUU		AUAUGGUUUC		4066060066	JUALCAACC
FS1000014 FS1000014	IAG <mark>-</mark> CTGCGT IAGGCTGCGT	TATAGCTTGGAA TATAGCTTGGAA TATAGCTTGGAA TATAGCTTGGAA		ТТБАТТСТАА ТТБАТТСТАА	AGGTTGGTGGT AGGTTGGTGGT	ΑΑΤΤΑΤΑΑΤ ΑΑΤΤΑΤΑΑΤ	ГАССТ GTATAG	ATTGTTTAGG	AAGTCTAATC		rgagagagat rgagagagag			GCCGGTAGCA		ATGGTGTTGA ATGGTGTTGA		GTTACTTT		ATATGGTTTC ATATGGTTTC		ATGGTGTTGG	TA
FS1000014 FS1000014	AGGCTGCGT AG <mark>-CA</mark> GCGT GGCTGCGT	TATAGCTTGGAA TATAGCTTGGAA TATAGCTTGGAA	аттстаасаатс аттстаасаатс аттстаасаатс	ТТGАТТСТАА ТТGАТТСТАА ТТGАТТСТАА	AGGTTGGTGGT AGGTTGGTGGT AGGTTGGTGGT	ΑΑΤΤΑΤΑΑΤ ΑΑΤΤΑΤΑΑΤ ΑΑΤΤΑΤΑΑΤ	FACCTGTATAG FACCTGTATAG FACCTGTATAG	ATTGTTTAGG ATTGTTTAGG ATTGTTTAGG	AAGTC		EGAGAGAGAT EGAGAGAGAT E <mark>GAGAG</mark>	ATTTCAACTG/ ATTTCAACTG/ ACTG/		GCCGGTAGCA	ACACCTTGTA/ ACACCTTGTA/ ACACCTTGTA/	ATGGTGTTGA ATGGTGTTGA ATGGTGTTGA	AGGTTTTAATT AGGTTTTAATT AGGTTTTAATT	GTTACTTT GTTACTTT GTTACTTT	CCTTTACA <mark>-</mark> TC CCTTTACA <mark>-</mark> TC CCTTTACAATC	ATATGGTTTC ATATGGTTTC ATATGGTTTC	CAACCCACTA/ CAACCCACTA/ CA	ATGGTGTTGG	
	AGGCTGCGT AGGCTGCGT	TATAGCTTGGAA TATAGCTTGGAA TATAGCTTGGAA TATAGCTTGGAA	ТТСТААСААТС ТТСТААСААТС	ТТБАТТСТАА ТТБАТТСТАА	AGGTTGGTGGT AGGTTGGTGGT	ΑΑΤΤΑΤΑΑΤ΄ ΑΑΤΤΑΤΑΑΤ΄	ГАССТ GTATAG	ATTGTTTAGG	AAGTCTAATC		rgagagagat rgagagagat	ATTTCAACTG/	ΑΑΑΤ <u>Ο</u> ΑΑΑΤΟΤΑΤΟΑΟ	GTAGCA		ATGGTGTTGA ATGGTGTTGA	AGGTTTTAATI AGGTTTTAATI AGGTTTTAATI	GTTACTTT		ATATGGTTTC ATATGGTTTC		ATGGTGTTGG ATGGTGTTGG	ГТА
	AGGCTGCGT	TATAGCTTGGAA TATAGCTTGGAA TATAGCTTGGAA		ТТБАТТСТАА ТТБАТТСТАА	GGTTGGTGGT GGTTGGTGGT	ΑΑΤΤΑΤΑΑΤ ΑΑΤΤΑΤΑΑΤ	TACCTGTATAG	ATTGTTTAGG	AAGTCTAATC		rgagagagagat rgagagagagat	ATTTCAACTG/	AAATCTATCAG AAATCT	GCCG TAGCA		ATGGTGTTGA ATGGTGTTGA	AGGTTTTAATI AGGTTTTAATI AGGTTTTAATI	GTTACTTT	CCTTTACAATC	ATATGGTTTC ATATGGTTTC	CAACCCACTA)	ATGGTGTTGG AT	
	GCGT	TATAGCTTGGAA	TTCTAACAATC	TTGATTCTAA	GGTTGGTGGT	ΑΑΤΤΑΤΑΑΤ	FACCTGTATAG	ATTGTTTAGG	AAGTCTAATC	TCAAACCTTTT	FGAGAG	ACTG/		GCCGGTAGCA			AGGTTTTAATT		CCTTTACAATC	ATATGGTTTC			

Name 🔺	Minimum	Maximum	Length	Change	Coverage	Polymorphism Type	Variant Frequency	Variant P-Value (approximate)	Amino Acid Change	CDS Position	Codon Change	Protein Effect
	23,041	23,041	1	-A	8,392	Deletion	1.4%	1.0E-85		1,479		Frame Shift
А	22,874	22,874	1	T -> A	8,380	SNP (transversion)	1.5%	4.3E-185	S -> T	1,312	UCU -> ACU	Substitution
А	22,992	22,992	1	G -> A	8,282	SNP (transition)	1.6%	1.7E-180	S -> N	1,430	AGC -> AAC	Substitution
А	23,012	23,012	1	G -> A	8,439	SNP (transition)	16.2%	0.0	E -> K	1,450	GAA -> AAA	Substitution
С	23,042	23,042	1	T -> C	8,389	SNP (transition)	8.0%	0.0	S -> P	1,480	UCA -> CCA	Substitution
G	22,917	22,917	1	T -> G	8,445	SNP (transversion)	6.0%	0.0	L -> R	1,355	CUG -> CGG	Substitution
G	22,934	22,934	1	A -> G	8,443	SNP (transition)	1.7%	3.7E-217	K -> E	1,372	AAG -> GAG	Substitution
Т	22,936	22,936	1	G -> T	8,374	SNP (transversion)	1.1%	1.6E-117	K -> N	1,374	AAG -> AAT	Substitution
т	23,063	23,063	1	A -> T	8,332	SNP (transversion)	9.0%	0.0	N -> Y	1,501	AAU -> TAU	Substitution

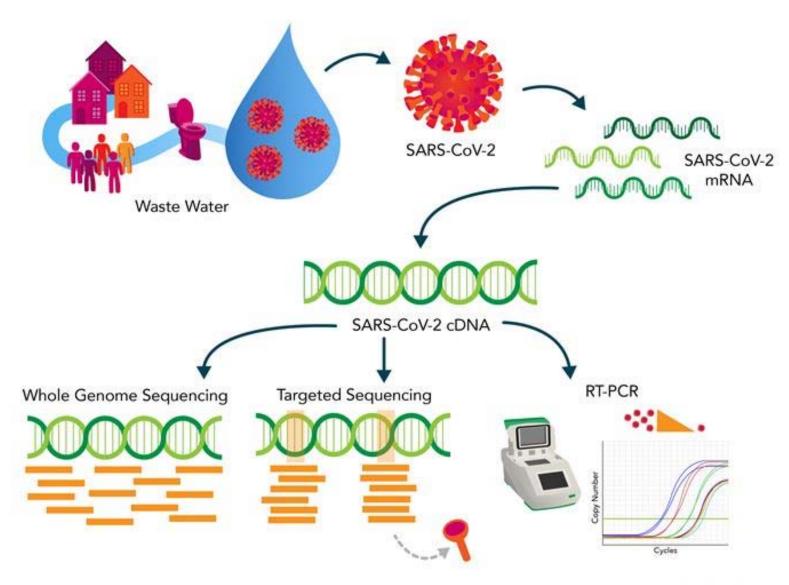
🕂 Columns 🔛 Track: Any 🖒 Export table

S494P


B.1.177.75, B.1.1.459, B.1.1.461, B.1.1.253, B.1.595.3, B.1.1.451, B.1.476, B.1.1.174, B.1.486, B.1.575, B.1.575.1

→ Pop i

Tracking variants with Wastewater


Concluding Thoughts

- Environmental Surveillance: An opportunity to convert applied research to a public health tool
- The toolkit is still in its infancy although many years of development have been condensed into the past 18 months
 - Significant progress in the analytical components of the toolkit
 - Still unclear how it will be fully leveraged by public health specialists
 - How strong of a predictive tool is it?
 - Sequencing for detection of variants being developed (CUNY/ Queens College /The New School)
 - Epidemiology (NYU, DOHMH)
- Opportunities to apply it in other public health emergencies, including non-pandemic conditions

Overview

Molly Metz, March 2021